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Abstract—Interactions with environmental objects can induce
substantial alterations in both exteroceptive and proprioceptive
signals. However, the deployment of exteroceptive sensors within
underwater soft manipulators encounters numerous challenges
and constraints, thereby imposing limitations on their perception
capabilities. In this article, we present a novel learning-based ex-
teroceptive approach that utilizes internal proprioceptive signals
and harnesses the principles of soft actuator network (SAN). De-
formation and vibration resulting from external collisions tend to
propagate through the SANs in underwater soft manipulators and
can be detected by proprioceptive sensors. We extract features
from the sensor signals and develop a fully-connected neural net-
work (FCNN)-based classifier to determine collision positions. We
have constructed a training dataset and an independent validation
dataset for the purpose of training and validating the classifier.
The experimental results affirm that the proposed method can
identify collision locations with an accuracy level of 97.11% using
the independent validation dataset, which exhibits potential appli-
cations within the domain of underwater soft robotics perception
and control.

Index Terms—Underwater soft manipulator, exteroception,
signal processing, neural network, collision detection.

I. INTRODUCTION

P ERCEPTION plays a crucial role in the closed-loop control
of soft robots and is also a vital feedback mechanism for

detecting their interaction with the environment and estimating
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their internal states [1], [2], [3], [4]. By utilizing additional exter-
nal sensors [5] and visual systems [2], [6], [7], previous studies
have equipped robots with an extensive array of sensing methods
to perceive and monitor objects and obstacles in their vicinity
dynamically, enabling the identification of potential collision
risks [6], touchless interactive teaching of soft manipulator [8],
and sensing contact shape to guide robot grasping by tactus [9].

There are also many reported works on terrestrial soft robots
with realization of both internal and external perceptions [8],
[10], [11], [12], achieving excellent performance in various
tasks. However, due to the limitations of the underwater environ-
ment, most sensors designed for use in the air cannot work prop-
erly underwater due to the electromagnetic shielding, corrosion,
water flow and turbulence, light absorption and scattering, and
difficulty in maintenance and deployment. Consequently, the use
of some optical and electromagnetic sensors is restricted [4],
[7], [13].

To overcome the limitations imposed by underwater environ-
ments on sensing technology and avoid complex sensor design,
the exteroception methods, which utilizes the proprioceptive
information within a manipulator to obtain external interaction
events, are being extensively explored. Pioneering works such
as tension sensors in cables in cable-driven system [14], [15],
pressure sensors in hydraulic actuation system [16], [17], and
optical sensors embedded in soft actuators in the manipula-
tor [18] have been reported. These methods are also used to
estimate the interaction force [1], [19] or position of the soft
robotic system with various approaches. In our previous works,
we utilized the inherently-presented pnuematic feedback as
proprioception [20], [21], enabling exteroception capabilities
in soft robots. Model-based methods are developed to estimate
the interaction force and position of soft gripper [22] and soft
manipulator [23]. And data-driven approach is also proposed to
calculate position and orientation of soft manipulator joint [24].

In these previous works, the deformation caused by inter-
action or actuation in multi-actuator systems is transmitted
through rigid components existing between the actuators, thus
simultaneously affecting multiple proprioceptive pressure sig-
nals. As a result, it’s possible to extract multi-modal perception
information from the indirect sensing signals. Meanwhile, in
the rigid robot field, there also have been reported works of
using joint torque [5], [25], motor current [26], and hydraulic
pressure [27] as proprioception signals to determine the robot
interaction state [6], [28], [29]. Consequently, utilizing the effect
on proprioception signals to sense the interaction state of UW
soft manipulator warrants further investigation.

In this work, we summarize the SAN concept from our previ-
ous works, and propose a novel model-free exteroperception
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Fig. 1. Total concept of the collision detection and localization in a hydraulic manipulator. (a) External collision events on the manipulator will be reflected in
the pressure data inside each soft actuator. (b) The concept of a soft actuator network (SAN), which is a physical structure network where external collisions and
vibrations on the manipulator will be transmitted along the soft actuators.

method for identifying collision interaction events and their
locations at specific points on the Planarly-Bundled and Overly-
Constrained (PBOC) soft UW manipulator from preceding re-
search [16], based on the characteristics of the SAN interacting
with the environment. Therefore the sensory capabilities of
hydraulic soft UW manipulator could be expanded with the
proposed method.

The main contributions of this work are as follows:
1) A new model-free collision localization method for soft

manipulators based only on the easily accessible internal
pressure signals of the actuators is proposed.

2) According to the characteristics of manipulator vibration
transmission along the SAN, the features of multi-channel
pressure data generated by vibration and collision events
are extracted, and an FCNN-based classifier is designed
to identify the collision location.

3) A demonstration of the proposed method is presented
by constructing an experimental device with the PBOC
manipulator and hydraulic pressure sensors, and the ex-
perimental results show that the proposed method can
effectively identify the collision position.

The rest of this paper is organized as follows. Section II
introduces the concept of the SAN, the proposed collision detec-
tion and localization method and the collision waveform feature
extraction method. Section III presents the experimental setup
and the experimental results. Section IV concludes the paper.

II. COLLISION LOCALIZATION METHOD WITH SAN

A. Collision Interaction Analysis

In hydraulic-driven soft robotic manipulator sys-
tems [17][16], collision events generate abnormal pressure
signals within the control system (see in Fig. 1), which possess
potential utility. However, these types of signals (such as
collisions or hydraulic hammer effects) are considered noise in
traditional systems and filtered out to maintain control stability.
This study aims to harness these signals by analysing their
characteristics for precise perception of collision events and

their locations. This approach not only enhances the system’s
sensing capabilities but also opens up new possibilities for the
application of hydraulic-driven soft manipulators in complex
underwater environments.

1) Analysis of Soft Actuator Network: The soft manipulator
consists of soft actuators and rigid connection parts, which can
be regarded as a SAN, as shown in Fig. 1(b) because these soft
actuators are connected to the rigid parts in a series or parallel
configuration. Since they are assembled as a whole, a collision
event at any point on the manipulator will generate vibrations
that propagate through the SAN. When these vibrations reach
the soft robotic actuators, the pressure signal oscillations of the
liquid medium inside them occur simultaneously. The oscillation
transfer function of soft actuators is difficult to establish due
to the complex compliance, hysteresis and flexibility of soft
actuators. This problem further makes it difficult to establish
oscillation models of the SAN containing soft actuators and
rigid components, because collision events generate vibrations
that propagate through various paths within the SAN.

2) Proprioception Network in SAN: In a hydraulic soft robot
manipulator, each soft actuator is connected to a pressure sensor
to form a hydraulic control loop, thus these sensors configure a
distributed proprioception network (PN) in the manipulator, cor-
responding to the SAN composed of soft actuators. As described
in 1), there is a strong coupling between the actuators in the SAN,
and pressure sensor signals also exhibit mutual interference. On
the other hand, the information from sensors possesses a high
degree of redundancy. The propagation of vibrations in SAN
after a collision event incorporates high-dimensional external
perception information related to the collision location into the
multi-channel pressure signals obtained from PN. Since the
theoretical models of collision localization of soft manipula-
tors is difficult to establish and the perception signals are also
complex, we propose a learn-based method to distinguish the
collision occurrence location of soft robot arms without relying
on theoretical models. Specifically, we propose a model-free
method that extracts waveform features from the multi-channel
pressure signals of PN and employs a neural network classifier to
identify the collision occurrence location of the soft manipulator.
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Fig. 2. Tree structure of the wavelet scattering transform, which will be used
for feature extraction of the pressure data inside the manipulator.

B. Feature Extraction From Collision Signal

The propagation of the collision-induced vibrations in the
PBOC manipulator potentially encompasses intricate pathways
and variable transfer functions, consequently, these internal
pressure signals from soft actuators at various positions exhibit
distinctive waveforms. Many detailed features related to the
position information of collision are contained in these pressure
signals, including each single channel signal and the differ-
ences between them. However, the waveform features in the
time domain are difficult to use to locate collision events. It is
necessary to extract these features from the raw sensor signals
into a suitable format for the classification.

Wavelet Scattering Network (WSN) is a novel computational
method that utilizes wavelet transforms to effectively process
complex signals and data without losing information [30][31].
The WSN allows for the extraction of features from real-valued
time-series and image data with time invariants. They have
emerged as a powerful tool in a variety of application areas,
including image processing, audio/signal analysis, and machine
learning [30][31].

The WSN is a multi-layer tree structure that decomposes the
input signal x(t) and the result of one layer is the input for the
next layer [32][33]. We defineN as the maximum level of layers,
Q as the number of wavelets per octave, φ as the low-pass filter
or scaling function and ∗ denotes the convolution operator. The
WSN decomposes input signals by proceeding with the three op-
erations after calculating the zero-order scattering coefficients:
wavelet convolution, taking modulus and averaging with scaling
function.
ψ(t) is the mother wavelet as a band-pass filter with a center

frequency normalized to 1 and bandwidth ofQ−1, whose Fourier
Transform is ψ̂(ω). ψλn

(t) is the n-th wavelet filter bank, which
is dilated from the mother wavelet as

ψλn
(t) = λnψ (λnt) ,

ψ̂λn
(ω) = ψ̂ (ω/λn) , (1)

where λn = 2k/Q, k ∈ Z, λn ∈ Λn, 1 ≤ n ≤ N,n ∈ Z,Λn is
the grid of all wavelet center frequencies λ. As shown in Fig. 2,
the input of WSN is x(t), in the zero layer, a time-average
operation is calculated by

S0x(t) = x ∗ φ(t), (2)

which removes all high frequencies.
The first layer takes x(t) as input and then performs wavelet

convolutions on the input signal with each wavelet filter ψ1 in

the first filter bank Λ1, in this order, resulting in a modulus of
|x ∗ ψλ1

|.
The first-order scattering coefficients are computed by aver-

aging the wavelet modulus coefficients with φ

S1x (t, λ1) = |x ∗ ψλ1
| ∗ φ(t). (3)

The second layer takes |x ∗ ψλ1
| as input of the second layer and

calculates the wavelet modulus coefficients ||x ∗ ψλ1
| ∗ ψλ2

|,
then the scattering coefficients is calculated as

S2x (t, λ1, λ2) = ||x ∗ ψλ1
| ∗ ψλ2

| ∗ φ(t). (4)

Generally, the higher-order wavelet scattering coefficients can
be calculated by repeating these three operations in sequence.
In this paper, the Gabor wavelet is used as the mother wavelet
to proceed with WSN decomposition. The calculated scattering
coefficients are utilized as the waveform features to construct
the proprioception collision dataset for classifier training and
the independent validation dataset for independent predictive
tests.

C. Design of the Collision Position Classifier

After using the WSN method to transform the temporal wave-
forms of signals into feature matrices in the feature domain, in
this section, we further employ this method to extract feature
data from the temporal waveforms of pressure oscillation signals
collected by the PN sensor nodes when a collision occurs in the
SAN. Based on the core task of collision location, we designed
a classifier for classification and recognition. Since the signal
features extracted using the WSN method are related to the
signal spectra, in order to preserve the integrity of the feature
information without affecting the generalization ability of the
neural network, we directly use the the raw feature data as input.
Furthermore, we designed a fully connected neural network
with a structurally simple architecture to perform classification
and recognition on the feature data, thereby highlighting the
effectiveness of the WSN method (see in Fig. 3). Due to the high
dimensionality of the input layer, when receiving the original
feature data, the hidden layer of the neural network is set to two
layers to avoid the underfitting problem.

III. EXPERIMENTAL VALIDATION AND RESULTS

A. Experimental Setup and Data Collection

Our previous work proposed a PBOC manipulator with a
hydraulic actuation and control system [16]. Here we retain
the relative pressure sensors (24PCDFA6D, Honeywell) in the
hydraulic control loop and remove other actuation components
since the data is collected in the passive manipulation state. The
overall schematic diagram of experiments is shown in Fig. 4(f)
and the experimental setup is shown in Fig. 4(a). In this setup,
soft actuators in the PBOC manipulator are filled with water.
Each sensor is connected to a soft actuator via hydraulic pipeline,
and all sensors are sampled by the data acquisition device (DAQ
device, USB5630-D, ART Technology) at a frequency of 2 kHz.
The collision points and their directions for the experiments and
verification are shown on the left side of Fig. 5. The right side
of Fig. 5 shows the number and name of each collision event,
which will be used in the subsequent work on feature extraction
and neural network training. A set of data examples are shown
in Fig. 6 where we present pressure signals sampled from four
actuators in the upper joint during a collision event at position
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Fig. 3. Complete process of using internal pressure information to locate external collision events, including signal data acquisition, the feature extraction of
8-channel pressure information, the construction and training of a fully-connected neural network, and finally the location of the collision event.

Fig. 4. Collision data collection experiment. (a) Automatic collision test device, the air-driven rubber head mechanically collides with the soft manipulator.
(b) Manual collision experiment, which was carried out by three independent experimenters. (c) Schematic diagram of the experimental design for automatic and
manual collision signal acquisition. Controller processes (d), air pipe connection (e) and the workflow (f) in automatic collision experiments.

Fig. 5. Positions and directions of collisions on the arm, where are used to
collect training data and detect collision events, including 5 axial points on the
top and 8 lateral points. The table shows the position numbers and labels.

a©. These signal waveforms and the differences between them
show the potential to locate the collision time through analysis
and training. The pressure signals are calculated from the voltage
signals of the sensors with the following equation:

p =
Uactuator − 2.5

1.65
× 206, (5)

Fig. 6. Sampled signal waveforms from actuators in the top joint in the
manipulator, the collision event occurs on position a© (JA_Actuator1_axial).

where p is the hydraulic pressure value inside the actuator,
Uactuator is the voltage signal collected by the sensor, and the
remaining constants are the characteristic parameters of these
sensors.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on November 18,2024 at 07:56:46 UTC from IEEE Xplore.  Restrictions apply. 



11086 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 12, DECEMBER 2024

Fig. 7. Analysis of pressure data for different collision events and locations. (a)-(d) and (f) shows the waveforms of internal pressure signals inside the manipulator
actuators. These pressure signals have been preliminarily denoised. (e) shows the position and direction of collisions on the manipulator.

To conduct the proprioception training dataset, we designed
both automatic and manual experiments, we also selected several
collision positions, these positions and their labels are shown in
Fig. 5, which are also used as position classification labels.

The entire collision test process and data acquisition includes
the following two parts: automatic test and manual test.

1) Automatic Test: The collision events are generated by an
air cylinder in this test mode, with pipeline connection showing
in Fig. 4(e). The proportional valve (IVT1050, SMC) regulates
the air pressure in the tank, and the solenoid valve (4V310-10,
Airtec) controls the airflow in the test device. The compressed
air is connected to the air zone 2 in the cylinder when the
solenoid valve is defective, which keeps the piston on the left
side, and thus the rubber head keeps its original position. When
the valve is activated, the compressed air is connected to air
zone 1, and the piston moves to the right side, thus the rubber
head produces a collision event against the PBOC manipulator,
performing the role of a pneumatic hammer. The operating
voltage of the solenoid valve is generated by the control board
(STM32F103C8T6, STMicroelectronics).

The test procedure is specified in Fig. 4(f), where the duration
of the random collision is defined as to, the time interval between
two random operations is defined as ti, and target air pressure
pt defined in Fig. 4(d) is generated. In the actual automatic
test, the range of to is [35 ms, 125 ms], and the range of ti
is [500 ms, 2000 ms], and pt ranges from 80 kPa to 220 kPa.
Due to the inherent response time delay of solenoid valves, the
rise and fall of air pressure lag behind the reversal time of the
operating voltage, resulting in a collision time being greater than
the opening time of the solenoid valves.

2) Manual Test: In the manual test, three independent par-
ticipants took part in the hammer test of the soft manipulator.

The participants were asked to use a rubber hammer and a metal
hammer to hit the soft manipulator 100 times at intervals of
approximately 1.5 s, applying different degrees of force.

B. Analysis of Collision Signals in the PN

After the collection of raw data, in this section, we will present
and analyze several raw signals of impact events with different
locations or sources (automatic or manual hammering) in PN.

1) Analysis and Labeling of Collision Signals in the PN: The
collision stimuli vibration propagated in the PBOC manipulator
could have complex paths and transfer functions, resulting in
different waveforms of the pressure signal in each soft actuator.
The pressure signals are numbered according to the actuator
position for easier observation of the differences between the
signals. Significant differences between these four pressure
signals within actuators can be observed, as shown in Fig. 6.

It is shown that the peak and valley voltage values are always
present in the actuator that is directly struck and its opposite
actuator. (Fig. 7(a) and (b)), and the signals in the two joints
have notable vibration mode (Fig. 7(a), (d) and (f)). And the dif-
ferent collision tools could also achieve observable differences
in pressure waveform (Fig. 7(b) and (c)).

2) Feature Extraction and Proprioception Collision Dataset
Construction: The total 8-channel collision signals are sampled
with position labels, and then the unique features of the pres-
sure signals in the time domain were extracted by applying
the WSN method. To compute the features of the 8-channel
pressure signals, a dataset construction program was developed
with MATLAB Wavelet Toolbox. The WSN in the program is
constructed with two orders of filter banks, the first one has a
quality factorQ = 8, and the second one hasQ = 1. The signal
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Fig. 8. Proprioception accuracy results of the neural network after training. These two confusion matrix shows (a) the classification results of the test part in the
proprioception collision dataset, and (b) shows the prediction results of the independent validation dataset, respectively.

length is much longer than the limitation of the signal sampling
rate. The time interval between two collision events is less than
2 s, so we choose the default scattering transform invariance
scale tvari = 2 s. The generated features are stored in a large
and high dimension matrix with the size of RF×T×N , which
are sorted by feature vector length F , number of channels N
and number of time windows T . The matrix is flattened into a
2D matrix (as shown in Fig. 3) with the size of RFN×T to fuse
feature data of all channels as the training or predicting dataset
with one row for a feature group. We used the calculated and
fused features from both automatic test data and manual test data
to construct the proprioception collision dataset, which was used
to train the FCNN classifier.

It should be explicitly noted that in order to ensure that the
neural network classifier is insensitive to the time-domain defor-
mation, stretching, and time shift of the signal, and has a larger
recognition tolerance, the signal is not split into signal segments
that contains only a single time-domain collision signal for the
WSN transformation. Because collisions of soft manipulators do
not occur continuously and regularly, the splitting operation also
breaks the randomness of the collision events in the experiments.
The collision recognition accuracy is defined as

As =
Nr

NT
, (6)

where Nr is the number of correctly recognized collision time
windows, andNT is the total number of collision time windows
in the dataset.

C. Signal Classifier Training and Self Test Results

The FCNN classifier that matched the proprioception collision
dataset was developed. The number of nodes in the feature input
layer matches the number of features in the WSN output, and the
output of the FCNN classifier matches the position number. The
network had 34 nodes in the first hidden layer and 100 nodes in
the second hidden layer.

The proprioception collision dataset was divided into train-
ing (70%) and testing (30%) sets randomly, ensuring that the

model’s performance can be assessed on unseen data during
training. To keep the classification accuracy, no normalization
was applied to the dataset. The network was trained on a single
CPU (AMD Ryzen R7-5800X@4.5 GHz) with Adam optimizer
for a maximum of 30 epochs and a minimum batch size of 50.
The total training spent 298 s CPU time. The testing confusion
matrix is in Fig. 8(a), and the total accuracy of the testing dataset
of the network is As = 93.7%.

D. Model Validation With Independent Manual Collision Data

After completing the training process, the neural network is
rigorously evaluated using an independent validation dataset
that was not used during the training phase. The independent
validation dataset was generated and sampled by the three par-
ticipants in manual testing in another independent experiment,
and the same feature extraction process was adopted to check
the prediction accuracy.

The neural network achieves remarkable performance in effi-
ciently classifying and identifying patterns within independent
data sets. The confusion matrix of the independent prediction
is shown in Fig. 8. From the results,the accuracy of the clas-
sification exceeds As = 97.11%, demonstrating the network’s
robustness and generalization capabilities.

E. Discussion

1) Prediction Accuracy of the FCNN Classifier: To verify
the separability of discrete collision locations, we employed the
t-SNE method for dimensionality reduction, thereby visualizing
the proprioceptive collision dataset and an independent valida-
tion dataset, as shown in the analysis diagrams of Fig. 9(a) and
(b). Classifying collision positions of this passive manipulator
is a relatively complex task, due to the high dimensionality of
the dataset and the overlapping of the feature distributions of
different classes, which contains noise and outlier data. The
independent validation dataset for classifiers with one hidden
layer consistently shows poor prediction accuracy in our classi-
fier training test, with results below 80%. However, adding an
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Fig. 9. Data visualization via t-SNE method for (a) the proprioceptive collision dataset and (b) the independent validation dataset. The color of the dots represents
the location of the collision. It provides a concise pattern to exhibit the separability of the two dataset.

additional hidden layer to the classifier significantly improves
the classification accuracy of the independent validation dataset,
with results above 95%.

To avoid the problem of overfitting and weak generalization,
we incorporated additional noise during the data collection pro-
cess. Specifically, we introduced randomness in the following
aspects of collision event generation:

1). Automatic experiments: We utilized randomly generated
collision forces and time intervals for PN data collection.

2). Manual experiments: The direction, force, and time inter-
val of the impact were randomly determined by the experimental
participants.

By incorporating this additional randomness, the range of
feature distributions is expanded in the proprioception colli-
sion dataset, thereby improving the classifier’s generalization
ability. As a result, the trained network achieves higher clas-
sification accuracy on the independent validation task than the
cross-validation accuracy during training.

Moreover, serval hyperparameter scanning experiments based
on Bayesian optimization are carried out by using the Experi-
ment Manager in MATLAB Deep Learning Toolbox. The results
obtained include the number of neurons set for the classifier
in Section III-C, the initial learning rate of 0.0384, and the
L2 regularization coefficient of 7.767× 10−6. With this pa-
rameter combination, the FCNN classifier achieved a balanced
recognition accuracy while avoiding overfitting or underfitting
problems.

2) The Real-Time Capability of the Proposed Perception
Method: The primary purpose of the experimental design is to
validate the effectiveness of the proposed perception method,
hence, a real-time collision position perception system was not
constructed. However, it is essential to investigate the real-time
perception capability of this novel sensing approach.

As depicted in Fig. 3, the trained FCNN classifier necessitates
complete signal feature vectors as its input to predict the collision
position. Therefore, the evaluation of the real-time capability of
this method consists of three parts in total, including the time
required for data acquisition, feature vector extraction, and the
forward inference process of the FCNN classifier.

The collection time must be greater than or equal to Tinv =
2000 ms to ensure that it meets the requirements of the WSN and
is capable of computing the feature vectors, thereby supporting

real-time inference. The average time consumption of extracting
2000 ms signal features by the WSN is 35.4 ms running on
CPU, and the average forward inference time of the FCNN
classifier is 0.03 ms running on CPU. Therefore, the total time
consumption of the calculating period is 35.4 ms + 0.03 ms =
35.7 ms � 2000 ms. Therefore, using a sliding time window of
Tinv = 2000 ms in length, the perception algorithm can infer
the collision position based on the pressure signal of the past
2000 ms in a period of no more than 100 ms to achieve real-time
capability. This requires at least 2000 ms of signal collection for
real-time inference.

IV. CONCLUSION AND FUTURE WORK

Based on the transmission characteristics of vibrations in
SAN, this paper introduces a model-free collision interaction lo-
calization method using internal pressure signals of soft robotic
arms. Through analysis of SAN and PN, the interconnection
between soft actuators allows collision-induced vibrations to
propagate via multiple paths, generating hydraulic pressure
fluctuations detectable by PN sensors. WSN techniques extract
waveform features from these pressure signals, creating a dataset
for training a neural network classifier. This enables model-free
collision localization perception. As a result, the test accuracy
rate reaches 93.7% after training on the proprioception collision
dataset. To further validate the accuracy and generalization
capability of the classifier, an independent manual collision
experiment is designed, and a similar method is employed to
construct the independent validation dataset. The prediction ac-
curacy rate of the classifier on the independent validation dataset
reaches 97.11%, demonstrating its excellent classification ca-
pability. This indicates that utilizing WSN to directly analyze
the PN multi-channel signal characteristics of soft robot arms
to obtain high-dimensional external perception information is
feasible.

Future work will focus on methods to further improve the
collision perception capabilities of soft underwater manipula-
tors, exploring collision perception when the manipulator is
actively actuating in various states, and enhancing the real-time
capabilities. Manipulator control and dynamic interactive re-
sponse based on this proprioceptive methods will also be further
investigated.
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