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Overview
Research Question
Can we learn the co-existing action from limited data (e.g., 10 images) and
generalize It to unseen humans or even animals, without extracting skeleton
and sacrificing generation flexibility, diversity, and quality?

Contributions

* propose a novel action customization task, which requires learning the
desired action from limited data for future generation.

» contribute the ActionBench, where a variety of unigque actions with
manually filtered images provide the evaluation conditions for the task.

* devise the Action-Disentangled Identifier (ADI) method, which inverts
action-related features into the learned identifiers that can be freely
combined with various characters and animals to generate high-quality
iImages.

Background

Action Customization Results by Adapting Subject-Driven Solutions:

Sample Image
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Two Observations:

* Neglect of high-level action features: Several methods (DreamBooth,
Textual Inversion, and ReVersion) generate images that are unrelated to
specific actions, suggesting that they fail to capture the representative
characteristics of the actions.

 Semantic contamination: Other methods (Custom Diffusion, P+) are
capable of encoding action-related knowledge, but they fall to decouple
the focus from action-agnostic features, such as the appearance of the
human body.
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Learning Disentangled Identifiers for Action-Customized *

Text-to-Image Generation
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Action-Disentangled Identifier (ADI)

subject-driven
customization

Input Prompt:

happy boy in denim jeans <A> on blue
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Context-different Action—different )
Expanding Semantic Inversion:

* overcomes the preference to low-level appearance features.

« applies layer-wise identifier tokens to increase the accommodation of various
features.

Learning Gradient Mask with Context-Different Pair:
» prevents the identifiers from inverting action-agnostic features in a gradient level.

* given 2(%¢) as an anchor sample, randomly samples 2(%%) with the same action
but different context (i.e., human appearance and background).

« calculates the absolute value of the difference between the two gradients, where
the channels with a small difference can be regarded as action-related and
expected to be preserved:
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Learning Gradient Mask with Action-Different Pair:

* uses the single anchor sample to quickly train a subject-driven customization
model, and generates :(@:¢) with the same context but different action.

* channels with small gradient difference can be regarded as context-related and
expected to be masked:
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Merging Gradient Masks for Context:

* due to the noise introduced by context variations, identifying action-
relevant channels using only context-different or action-different pairs
would be difficult and unreliable.

» Kkeeps only the intersection of the unmasked channels as unmasked,

and overwrites the gradient of the anchor sample:
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Main Results with Stable Diffusion 2.1

ActionBench:
* 8 unigue actions, ranging
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boo_ly movem_e”ts' ControlNet [35] 4130 | 42.66 | 19.29
* 10 images with textual DreamBooth [25] 245 | 95.65 | 2.45
descriptions for each action. Textual Inversion [5] 2.17 86.14 1.90
. 23 subiects for evaluation ReVersion [7/] 1.63 84.51 1.63
_ % _ » Custom Diffusion [9] | 29.62 | 53.53 | 7.07
including generic humans,  p, 30, 26.90 | 80.16 | 20.92
well-known personalities, ADI (Ours) 60.33 | 85.87 | 51.09

and animals.
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For more experimental results please refer to our paper.

Visit https://adi-t2i.github.io/ADI/ for more information.
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